
Chapter 2
How to Learn HMSL

Introduction: Paths to learn the system
Learning HMSL can be a bit like like learning a foreign language. It would be nice to know every
word in the language, but you can get by after learning just the most important ones. Many composers
have written interesting pieces in HMSL after just a few days of learning. Those same composers are
still learning new techniques after using HMSL for several years.

At the foundation of HMSL is the Forth language. A working knowledge of Forth is necessary to
learn HMSL. You may already know Forth but if not we recommend using the tutorials in the Forth
documentation. These can be found in the JForth manual for the Amiga, or in the Macintosh
Supplement. There is a self-quiz at the end of this chapter to test your Forth knowledge. If you can
pass this quiz then you know enough Forth to continue learning HMSL.

HMSL has many different aspects to it. You can learn the parts that most interest first, then learn other
parts later. The best way to learn is to have fun and play. We’ll describe in this chapter several
different possible paths you can take to learn HMSL. Pick the one that most interests you and learn
that one first.

Path 1 - MIDI, low level Scheduling and Timing, System Exclusive.

Path 2 - HMSL Hierarchies, Object Oriented Programming, Shapes, Players, Instruments,
Jobs, Collections, Actions.

Path 3 - User Interfaces, Object Oriented Programming, Graphics, Building Interactive
Screens.

Path 4 - Tools: Score Entry System, Sequencer.

Path 5 - Advanced HMSL Hierarchies, Interpreters, Markov Chains

Path 6 - Amiga Local Sound, Samples and Waveforms, Tuning

Here is a list of what to read in the HMSL manual for each path. You may want to check things off as
you learn them.

Path 1 - MIDI
___ Tutorial 1 in Chapter 13 on MIDI . Learn how to send MIDI messages to synthesizers, Note On,
Control, etc.

___ Examples in Chapter 13 on the MIDI Parser. Learn how to respond to MIDI messages from a
keyboard or other input device

(for more advanced ideas):

___ Chapter 14 on Timing and Scheduling. Learn how to schedule MIDI events in the future using
the hardware clock.

___ Chapter 13 on MIDI System Exclusive messages.

___ Chapter 13 on MIDI Files

How to Learn HMSL 2 - 1

Path 2 - HMSL Hierarchies
___ First ODE Tutorials Chapter 4

___ Overview of Morphs

___ Shape Tutorials in Chapter 5

___ Player Tutorials in Chapter 6

___ Instrument Tutorials in Chapter 7

___ Collection Tutorials in Chapter 8

___ Jobs Tutorials in Chapter 10

___ Perform Tutorials in Chapter 12

Path 3 - User Interfaces
___ ODE Tutorial in Chapter 4

___ Tutorials on Interactive Controls in Chapter 15

___ Tutorial on Graphics in JForth Manual or Macintosh Supplement

Path 4 - Tools
___ Chapter 16 on Score Entry System

___ First Tutorial on the Sequencer in Chapter 17

Path 5 - Advanced HMSL Hierarchies, do Path 2 first.
___ Interpreters Tutorial in Instruments Chapter 7

___ Structures and Markov Chains, Chapter 9

___ Translators and Translator Functions, Chapter 11

Path 6 - Amiga Local Sound and Tuning
___ Chapter on Amiga Local Sound in Amiga Supplement

___ Chapter on Amiga Instruments in Amiga Supplement

___ Section on Tunings in Translator Chapter

___ Chapter on Timing and Scheduling

Other Tips on Learning HMSL

Disk-Based Examples

Study the examples on disk. There are many example files on disk that you can compile and run. We
recommend reading the file first by using a text editor so you know what it is supposed to do. You
may want to make a copy of these files and change them to experiment with different ideas. These
files will be in the pieces folder/directory on the HMSL_User disk.

These files contain many useful code examples, but they also contain a great deal of important
information about programming style, which is very important, especially to the beginning user and

2 - 2 HMSL Reference Manual

programmer. Good programming habits can save you an enormous amount of time, energy, and
frustration, and make your composing and performing more enjoyable. Pay careful attention to the uses
of indentation, comments, upper and lower cases, naming of routines, use of special techniques like
ANEW, TERM and INIT words, IF.FORGOTTEN. Learning these techniques early on will really help
your music programming.

HMSL Source Code

Look at the source code for different parts of HMSL. If you want to know how something works,
look at how it was written. You can use the word FILE? to find out what file something was defined
in. For example, enter:

FILE? CHOOSE

This will tell you the name of the file that CHOOSE was defined in. Most of the HMSL source code
files can be found in the Source folder/directory on the HMSL_Source disk. A method for a Class of
objects may be defined in its Superclass' file. To find out where to look for the definition of a method,
use METHODS.OF. For example:

METHODS.OF OB.PLAYER

This will list all the methods defined for a given class. Notice that some of the methods are from Jobs,
Collections, and other classes.

Before You Start, A Forth Quiz!
Before tackling HMSL, you should already have a basic understanding of Forth. Here is a short quiz
to test your Forth chops:

1) [Use of variables] Define two variables called VAR-1 and VAR-2. Write a Forth word that
implements the following algebraic statement:

VAR-2 = (VAR-1 * 3) + 5

 2) [Text output, simple control structures] Write a word in Forth to say "Hello" repeatedly until you
hit a key. Each "Hello" should be on its own line.

3) [Stack manipulation] Complete the following definition:
: STACK.MANIP (a b -- a a b b)

?????????
;

4) [Editing and compiling a file] Use the editor to write a program that adds up the first N odd
numbers.

5) [Object oriented programming] Create an OB.ARRAY object with ten items. Fill it with various
numbers. Write a word to add them up. Print the array.

6) [Extra Credit] What did the Zen master say to the hot dog vendor?

If you want to check your answers, they can be found at the end of this chapter.

Syntax Used in Code and Manual
Whenever possible, we conform to certain mnemonically motivated syntactical conventions. We
highly recommend that users follow these to increase comprehensibility. We have found, through
many years of teaching HMSL, that if you get into the habit of following these simple conventions at
the beginning, your code will be far more readable, and easier to debug. Some of these conventions are
as follows:

• In general, in example code, parentheses indicate comments. All code in this manual is generally in
upper case, but —

How to Learn HMSL 2 - 3

• In general it is a nice idea to use upper case in your own code mainly for the names of words, and for
selected control words like DO, LOOP, BEGIN, UNTIL, CASE, ect. Use lower-case for the code in
the definition. For example:

: MY-WORD
some.other.word

;
Note that this is not the way the code appears in this manual, but look at the examples on the disk, or
the source code for HMSL itself for a good guide.

• A hyphen in a word indicates a variable, the name of instance of some class, or a "noun" of some sort,
as in these examples:

FOO-BAR (variable called FOO-BAR)
COLL-SEQ-2 (SEQUENTIAL COLLECTION number 2)
ACT-5 (ACTION number 5)

• An underscore in a word indicates a constant, often a filename, or some "noun" that is not a variable.
Here is an example:

DA_NUM_CHANNELS (#channels on Amiga)

• A "." (period) in a word indicates some sort of "verb," or function. Periods can also be used in
METHODS (see below, and the Chapter on Object Development Environment). For example,

TIME.INIT

initializes the real-time-clock.

• A ":" (colon) at the end of a word indicates that the word is probably a METHOD, as in this example:
ADD: (a method used to add data to an object)

• A "$" (dollar sign) in a word name or stack diagram indicates that the word involves Forth strings that
are represented by an address of a count byte followed by the characters of the string.

$. ($string -- , print out a string)
for example: " Hello!" $.

• A parameter in angle brackets indicates a string which FOLLOWS the word. This parameter is not
passed on the stack as a number.

FOPEN (<filename> -- fileid | 0)
for example: FOPEN 77MHD:DATAFILE or
'C (<forthname> -- cfa)
for example: 'C MIDI.NOTEON .HEX

• Some simple file-name prefixes are used:
ajf_ (Amiga JForth only)
mmac_ (Macintosh Mach 2 only)
obj_ (related to object oriented code)

• Words from a single software module often have a common prefix to distinguish them, as in these
examples:

MIDI.NOTEON (turn on a MIDI note)
MIDI.PRESSURE (set MIDI channel pressure)
DA.PERIOD! (set period for Digital Audio)

• When PUT(...): is used in a method name, that implies that an argument is needed on the stack, as in
this example:

ACT-5 PUT.ACTION: ACTION-TABLE
(Takes the address of ACT-5 and places it in the action table)

2 - 4 HMSL Reference Manual

• When USE...: is used in a method name, that means that no argument in general is needed, as in this
example:

USE.DURATIONAL: PLAYER-1
(Tells PLAYER-1 to start using durational scheduling, and no argument
is needed).

• Forth stack diagrams follow the standard syntax: a double hyphen (--) indicates the stack. The
contents of the stack before the word is executed are to the left of the hyphens, the contents of the stack
after the word is executed are to the right of the hyphens. Top of the stack is always furthest to the
right! In other words, the value closest to the hyphen on input is the top of the stack, the value furthest
from the hyphen on output is the top of the stack. A comma after the stack output begins a comment on
the word; " | " indicates "or", such as "1 | 0 ."

Answers for Forth Quiz
Answer to 1)

VARIABLE VAR-1
VARIABLE VAR-2
: DOMATH (-- , set var2=var1*3+5)

VAR-1 @
3 * 5 +
VAR-2 !

;
(now test it)
20 VAR-1 !
DOMATH
VAR-2 ? (should say 65)

Answer to 2)
: SAYHI (-- say hello almost forever)

BEGIN
." Hello!" CR
?TERMINAL (wait for key hit from terminal)

UNTIL
;
SAYHI

Answer to 3)
: STACK.MANIP (a b -- a a b b)

OVER SWAP (-- a a b)
DUP

;
\ or
: STACK.MANIP (a b -- a a b b)

SWAP DUP (-- b a a)
ROT DUP

;
2 5 STACK.MANIP .S

Answer to 4)

How to Learn HMSL 2 - 5

: ODD.SUM (N -- SUM , sum first N odd numbers)
0 (initial sum) SWAP 0
DO I 2* 1+ (-- odd) +
LOOP

;
3 ODD.SUM .
7 ODD.SUM .
3 3 * .
7 7 * . (What??? Isn't math fun!?!?!)

Answer to 5)
OB.ARRAY MY-ARRAY (instantiate an array)
10 NEW: MY-ARRAY (make room for 10 numbers)
23 2 TO: MY-ARRAY (put in various numbers)
93 4 TO: MY-ARRAY
721 5 TO: MY-ARRAY
PRINT: MY-ARRAY (print out array)
: ADDEMUP (-- SUM , add up numbers in MY-ARRAY)

0 (initial sum)
SIZE: MY-ARRAY 0
DO (-- sum)

I AT: MY-ARRAY +
LOOP

;
ADDEMUP . CR (test it)
FREE: MY-ARRAY (deallocate the memory allocated by NEW:)

Answer to 6)

“Make me one with everything.” (thanks to Mark Trayle)

2 - 6 HMSL Reference Manual

	Chapter 2
	How to Learn HMSL
	Introduction: Paths to learn the system
	Path 1 - MIDI
	Path 2 - HMSL Hierarchies
	Path 3 - User Interfaces
	Path 4 - Tools
	Path 5 - Advanced HMSL Hierarchies, do Path 2 first.
	Path 6 - Amiga Local Sound and Tuning
	Other Tips on Learning HMSL
	Disk-Based Examples
	HMSL Source Code

	Before You Start, A Forth Quiz!
	Syntax Used in Code and Manual
	Answers for Forth Quiz

