
Chapter 6
Players

Most Important Information
Players schedule the interpretation and performance of shape data. In other words, they play the shapes that
they contain. Some of the most important player methods are: PUT.INSTRUMENT: , PUT.DUR.DIM: ,
PUT.DUR.FUNCTION: , PUT.ON.DIM: , PUT.REPEAT: , PUT.REPEAT.FUNCTION: , and START:

Player

Shape

10 7 80
10 5 68
...
...
...

Shape

10 7 80
10 5 68
...
...
...

List
of Shapes

Instrument

Address of
Instrument

Address of
Interpreter

Shape Data is
Passed by Player
To Instrument

for Interpretation.

MIDI Synthesizer or
other hardware

Player
watches
clock.

Figure 6.1 - Shape/Player/Instrument Interaction

Tutorial 1: Shapes, Players and Instruments
Shapes are played byPlayers. A player reads the timing information in a shape, typically stored in dimension 0,
and sends the data to a Virtual Instrument, or Instrument for short. The instrument converts that data to
something meaningful, like notes. Let's compare this to the situation where a human performer is playing.
Here is a table comparing the real world objects to HMSL objects.

Real World HMSL
Performer => Player

Players6 - 1

Score => Shape
Violin => Instrument

This analogy can only be carried so far. The human performer always interprets the score perfectly (of course)
and plays it on a magnificent but unchanging instrument. In HMSL, the player only interprets the timing
information and leaves the interpretation of everything else to the instrument. The player does not even know
what kind of instrument is being played. We will see later how instruments can interpret shape data as any
arbitrary parameter to generate algorithmic composition, control unusual hardware, output text, or whatever the
composer decides.

We supply some simple instruments with HMSL (like the MIDI Instruments, which interpret dimension 1 as
pitch, and dimension 2 as velocity), but one of the most powerful features of the language is the ability for users
to create their own complex and intelligent instruments to control MIDI, video, local sound, kinetic sculpture,
analog hardware, or anything they want. To keep the player tutorial simple, we will use shapes that contain
MIDI note information. (For examples of more exotic shape interpretation, see the chapter on Instruments and
Interpreters.)

Let's instantiate a shape, a player and an instrument to experiment with. Please enter the following directly at
the keyboard, not in a file. Enter:

OB.SHAPE SH-1
OB.PLAYER PL-1
OB.MIDI.INSTRUMENT INS-1

We could have used predefined objects, like SHAPE-1, but it is also possible to create/instantiate as many new
objects as you want. Since we studied shapes in another chapter, we won’t explain how to put data in a shape.
In fact let's be real lazy and let HMSL fill our shape with reasonable data. PREFAB: will fill a shape with data
that follows a random walk. Enter:

PREFAB: SH-1
PRINT: SH-1
PRINT: PL-1

Notice that the player has an instrument of 0, or no instrument. We must tell the player to use a particular
instrument. (This is like telling a performer which violin to play.) To do this enter:

INS-1 PUT.INSTRUMENT: PL-1
PRINT: PL-1

Notice that the instrument is now set but the player has no reference to SH-1. We must put the shape in the
player. Enter:

1 NEW: PL-1 (make room for 1 shape)
SH-1 ADD: PL-1
PRINT: PL-1

We could have put several shapes in PL-1. They would be played one after the other. We are now ready to play
the shape. Enter:

PL-1 HMSL.PLAY

HMSL.PLAY takes a single morph on the stack, starts it and runs HMSL. You may have noticed that the shape
only played once. This is because PL-1 has a repeat count of 1. Enter:

PRINT: PL-1 (notice repeat count)
10000 PUT.REPEAT: PL-1 (plenty long)
PRINT: PL-1
PL-1 HMSL.PLAY
\ then quit

6 - 2 HMSL Reference Manual

NEW: , ADD: and PUT.INSTRUMENT: are the most direct methods used in connecting shapes, players and
instruments Since this is a very common activity, however, we have provided a few shortcuts. There is a quick
method, called }STUFF: for stuffing things into objects It will automatically do a NEW: and ADD: the things
you specify. As an example, enter:

STUFF{ SH-1 SHAPE-1 SHAPE-2 }STUFF: PL-1
PRINT: PL-1

This stuffed two predefined stock morphs plus our SH-1 into PL-1. You can put as many things as you want
between STUFF{ and }STUFF:. If you have just one shape, and want to put it, and an instrument, in a player
in one shot, you can use BUILD:. Enter:

SH-1 INS-1 BUILD: PL-1

Build has the following stack diagram:

BUILD: (shape instrument -- , put these in player)

Tutorial 2: Controlling Players
This tutorial will work best if you use a sustaining MIDI preset. Reed or brass sounds will work great. Avoid
percussive sounds like drums, etc. Set up your synthesizer so it responds to MIDI channel 1.

For this tutorial, let's use the shape, player, and instrument we created in the last tutorial. If you are starting
fresh, and are not continuing directly from the previous tutorial, enter (not in a file):

OB.SHAPE SH-1
OB.PLAYER PL-1
OB.MIDI.INSTRUMENT INS-1
PREFAB: SH-1
SH-1 INS-1 BUILD: PL-1
10000 PUT.REPEAT: PL-1

In this tutorial we will run HMSL in a special way. Using the word HMSL.START, the keyboard will remain
active while HMSL is running. In an earlier chapter of this manual, we referred to this as HMSL+Forth Mode.
This will allow us to change values in our morphs, print morphs, etc. while they are playing. You might be
tempted to run like this all the time but printing and keyboard entry will be slower than normal. To start HMSL
running "in the background" without the graphics opening up, enter:

HMSL-GRAPHICS OFF
HMSL.START

(This is documented more fully in the chapter "HMSL Operation"). Since the HMSL scheduler is now running,
we can play a morph just by START:ing it. Enter:

START: PL-1
PRINT: PL-1

You should hear PL-1 start to play. When you printed PL-1, it probably printed more slowly. This is because
HMSL gives a higher priority to the real time scheduler than to printing. When it printed, it probably listed
values of 0, zero, for its Start, Stop, and Repeat Delays. These delays occur when a player is started, repeated,
or stopped. We can set the repeat delay while PL-1 is playing. The repeat count was originally set high, 10000,
so we should have plenty of repetitions to experiment with. Enter:

60 PUT.REPEAT.DELAY: PL-1

Every time the player gets to the end of a repetition, it will delay for 60 ticks which is usually one second.

Players6 - 3

We can also affect other player parameters. As you know, a note must generally be turned OFF some time after
being turned ON. Otherwise it could sound forever which is referred to as a stuck note. The time between a
note being turned ON then OFF is called the on time. The time between successive note ons is called the
duration. A player will automatically wait some fraction of the total note duration after turning the note on,
then turn it off. This fraction is known as the duty cycle. Notice in the printout of the player that the duty cycle
is 4/5. That means that the note will be on for 4/5 of its total duration. To make the melody more staccato we
can change this to 1/5. Enter:

1 5 PUT.DUTY.CYCLE: PL-1 (listen)
17 23 PUT.DUTY.CYCLE: PL-1 (listen)

If desired, on-times can be specified explicitly per note by storing on times in a dimension of the shape. You
can instruct the player to use these values by calling the PUT.ON.DIM: method. We will examine this in more
detail later. (Also see the chapter on Recording and Sequencing.)

We can also affect the duration of the notes. Players normally read their timing information from one
dimension of the shape. By default, this is dimension 0, zero, but we can use any dimension for durations.
Let's use dimension 1 for durations as well as pitch. Enter:

1 PUT.DUR.DIM: PL-1

Notice that the rhythm has become irregular and the high notes last longer than low notes. We can specify no
duration dimension by setting this value to -1. In this case the player will use its fixed duration. Enter:

8 PUT.DURATION: PL-1
-1 PUT.DUR.DIM: PL-1 (now it uses 8)
16 PUT.DURATION: PL-1
0 PUT.DUR.DIM: PL-1 (back to "normal")

There is also a third way to specify durations. We can tell the player to use a custom function to figure out the
duration for an element. This function could use data from the shape, or figure out a duration based on other
data. To do this we give the player a pointer to the function we want it to use.

We will describe pointers in case you are not familiar with them. Every function in Forth resides at some
location in the dictionary. This location has an address. The HMSL word 'C (pronounced "tick C") will give
us the address of a function. Enter:

: HI CR ." Hello!" CR ;
'C HI . (print CFA)
'C HI 30 DUMP (show machine code for function)

The number printed is the CFA, or function pointer, for HI. (CFA actually stands for “code field address”). The
computer machine code necessary to perform the HI function is located in memory at that address. We can
execute HI by name or by address. Enter:

HI
'C HI EXECUTE

The standard Forth word EXECUTE takes the address left by 'C and executes the function located there.
When a function pointer is given to a player, it will save it and later use EXECUTE to perform that function.
The functions that are called in this manner must have a standard stack diagram that suits the situation. In this
case, the stack diagram for a duration function is:

your.dur.func (element# shape -- duration)

Note that your.dur.func is not an already defined HMSL routine, but refers to any function that the user might
create for this purpose. Any function you create must have the above stack diagram. The ELEMENT# is the
element about to be played in the current SHAPE. Since the shape is passed on the stack, we must use late

6 - 4 HMSL Reference Manual

binding to access its data. Here is an example of a duration function that reads the value in dimension 0, then
chooses a random value at or below that value. Enter:

: RAND.DUR (element# shape -- duration)
0 SWAP (-- element# 0 shape)
ED.AT: [] (-- value)
CHOOSE 1+

;

We can test our function by passing the same parameters the player would. Enter several times:
0 SH-1 RAND.DUR .

Now let's tell our player to use it. Enter:
'C RAND.DUR PUT.DUR.FUNCTION: PL-1

You should hear the durations change to a more random pattern. When you want to go back to using dimension
0 as durations, enter:

0 (zero) PUT.DUR.FUNCTION: PL-1

When you are done listening to this player, stop it by entering:
STOP: PL-1

When we use shapes and players, they allocate memory that we must deallocate (free) when done. Enter:
HMSL.STOP (to stop the HMSL scheduler)
FREE: PL-1
FREE: SH-1
HMSL-GRAPHICS (turn it back on for other examples)

Advanced Technique: Use of Local Variables in Functions

Generally, with functions like the above RAND.DUR it is easier to use local variables in the definition, rather
than stack manipulation. In the case of the above function, RAND.DUR, we can rewrite it using local variables
called element# and shape. Note the use of curly brackets to signify that two local variables will be created for
this word, whose values will be passed in on the stack. Anything after the double hyphen is just an ordinary
comment, so this word still returns a number just as before. This is a good habit to get into, since it simplifies
your code tremendously, and doesn’t really sacrifice much execution speed. Try the following word, and notice
that it does exactly what the previous definition did, but is a lot easier to understand!

: RAND.DUR { element# shape -- duration }
element# 0
ED.AT: shape (-- value)
CHOOSE 1+

;

One of the nice things about local variables is that your code involves a lot less Forth-ish (and hard to read and
understand) stack manipulation, and actually starts to look like your comments! Local variables are fully
described in the JForth and HForth manuals, and there are lots of examples of them in the sample pieces and
source code. Get in the habit of using them, they save tremendous wear and tear on your brain cells.

Tutorial 3: Algorithmic Composition
In this tutorial we will experiment with algorithmic composition. Algorithmic composition involves the use of
algorithms, processes, or "recipes," for deciding what will occur musically. For this example let's use the
following simple algorithm.

1) Choose a random starting note.

Players6 - 5

2) Generate a scale upwards from that note.

3) Play the scale 4 times.

4) Repeat the entire process many times.

The question is, "How do we translate this algorithm into an HMSL program?" We know how to generate a
random starting note using CHOOSE. The scale can be generated in a DO...LOOP and stored in a shape. We
can play the shape repeatedly using a player. In this tutorial we will learn how to embed custom functions in a
player, or any morph, to perform different algorithms.

Let's enter this tutorial in a file so that we can change it later. Refer to the machine specific supplement if you
need instructions on how to edit and compile files.

At the beginning of the file, we should put a comment describing the piece. We should also use ANEW so that
we can recompile the file many times and each time automatically forget the code we previously defined. The
beginning of the file is also a good place to instantiate the objects we will need. Enter in the file:

\ HMSL Player Tutorial
\ Play ascending scales
ANEW TASK-TUT3

(by convention, use TASK-filename)
\ Instantiate necessary objects.
OB.SHAPE SH-1
OB.PLAYER PL-1
OB.MIDI.INSTRUMENT INS-1

Now let's write a word to setup our shape with some default values for duration and velocity. We will make
room for 32 elements in case we want to edit the shape. Since we aren't using ADD: to put in the values, we
must use SET.MANY: to tell the shape it has data in it. Enter in the file:

: INIT.SH-1 (--)
32 3 NEW: SH-1

(allocate memory for 32 elements)
16 SET.MANY: SH-1

(force element count to 16)
10 0 FILL.DIM: SH-1 (set durations to 10)
80 2 FILL.DIM: SH-1 (set velocities to 80)

;

If you use commands like NEW: or ADD: in a file, they should be used within colon definitions. Generally, the
only things which should be outside colon definitions are statements using VARIABLE, CONSTANT, VALUE
or CREATE, comments or messages, or the instantiation of objects. Since Forth is very flexible, you can, of
course, do whatever you want but it will be less confusing in the long run if you follow this rule.

In this tutorial, we will use a repeat function. Players, like collections, actions, jobs and structures have Start,
Repeat, and Stop Functions. These functions are always passed the address of the morph on the stack. Thus the
stack diagram for these functions MUST be:

your.s/r/s.function (morph --)

Now let's write the code to generate an ascending scale. Instead of always going up by 1, we wil go up by 1, 2
or 3. Let's use local variables in this word. Enter in the file:

: MAKE.SCALE { player | incr note -- , make a scale in SH-1)
3 CHOOSE 1+ -> INCR

(choose increment = 1|2|3)
24 12 WCHOOSE -> NOTE

6 - 6 HMSL Reference Manual

(choose a random starting note)
MANY: SH-1 0
DO NOTE I 1 ED.TO: SH-1

(set note in dimension 1)
NOTE INCR + -> NOTE
(-- increment note)

LOOP
;

The above code produces a scale. We can tell the player to execute this function when it starts and every time it
repeats. Thus each repetition will have a different scale.

In this piece, we want to repeat each scale 4 times. There are several ways to do this. One easy way is to put
the shape in the player 4 times using the }STUFF: method. Now let's setup the player.

Enter in the file:
: INIT.PL-1 (--)

STUFF{ SH-1 SH-1 SH-1 SH-1
}STUFF: PL-1
INS-1 PUT.INSTRUMENT: PL-1
1000 PUT.REPEAT: PL-1 (go a long time)

\ Execute MAKE.SCALE when we start and repeat.
'C MAKE.SCALE PUT.START.FUNCTION: PL-1
'C MAKE.SCALE PUT.REPEAT.FUNCTION: PL-1

;

We strongly recommend having a word that will initialize an entire piece, and a word that will clean everything
up. This may seem like extra typing but it will really help you organize the piece. It is also very handy when
testing because you can initialize the piece then examine your objects before running it.

: TUT3.INIT (-- , set everything up)
INIT.SH-1
INIT.PL-1

;
: TUT3.TERM (-- , clean up)

CLEANUP: PL-1
;
: TUT3.PLAY (--)

TUT3.INIT
PL-1 HMSL.PLAY
TUT3.TERM

;

Compile this file according to the instructions in the Macintosh or Amiga Manual Supplement. Before trying to
run the whole piece, let's test parts of it. Enter directly at the keyboard:

INIT.SH-1
PRINT: SH-1

You should see 16 elements with 10 in dimension 0 and 80 in dimension 2. Now let's try our scale generator.
Enter:

PL-1 MAKE.SCALE
PRINT: SH-1

Players6 - 7

You should see increasing values in dimension 1. If this didn't work, check your file to make sure it matches the
tutorial. If those worked, try the whole piece. Enter:

TUT3.PLAY

6 - 8 HMSL Reference Manual

Players — subclass of OB.JOB, OB.MORPH
Players are responsible for "playing" the data of one or more shapes in time. The first dimension of a shape is
generally (but not always) treated as timing information. The value in that dimension can be either the time
since the shape was started, the time until the next element is to be played, or interpreted by a user function as
something else (as in the previous section which showed the used of custom duration functions). When the
player decides it is time for an element of a shape to be played, it passes the element number and the shape
address to an instrument. The instrument is responsible for interpreting the shape data and converting it to
musical sound, or some other form of output.

Players thus provide the "patch" in HMSL between data and what we call theVirtual Device Interface, or
instrument definitions. The user "puts" an instrument into a player, and in that way the abstract data of shapes is
"patched" to a concrete realization of some sort. Instruments, of course, are user-definable and could include
things as varied as MIDI, numbers to be used for a notated score, or graphics and video. Instruments can have a
great deal of intelligence as well, they can translate data from one system to another, or operate on their data in
any way the user wishes.

Players are treated in the HMSL hierarchy exactly like any other morphs, except that they can only contain
shapes. They inherit the repeat count, nodal weight, and many methods from collections. It is important to
state that players are the eventual end of most hierarchies—at some point the Polymorphous Executive usually
needs to task something in time, so there are usually players at the bottom of any tree of morphs. Players are the
"leaves" of a morph tree.

Specifying Time in different ways

As mentioned above, there are two different ways of specifying the time an element of a shape is to begin
playing. One form stores ticks until the next event. A group of 4 notes 10 ticks apart would have times 10, 10,
10, 10. This is called relative time because the time is relative to the next note. The other way of specifying
time is as the time since the shape started playing, called absolute time. A group of 4 notes 10 ticks apart
would have the following times: 0, 10, 20, 30. You can select between the two different forms of time
specification using the USE.ABSOLUTE.TIME: and USE.RELATIVE.TIME: methods for players.

These two forms of time specification have the following properties:

Relative Time = 10,10,10,10:

When you remove an element, the other elements automatically "move up" to fill in the gap, which you may or
may not want. Another feature is that all the durations can be easily scaled by just multiplying the time values
by a fraction. The duration of the last element determines when the shape ends. Notice that there is no way to
specify a gap before the first element!

Absolute Time = 0,10,20,30:

Adding or removing elements does not affect the timing of other elements. Times must be maintained in sorted
order. This form is handy for recording and playback, and also for scheduling Cue Lists. Notice that the first
element can start anytime, not just at zero. There is, however, no way to specify silence after the last element!

The conversion between these time forms can be done using the shape methods DIFFERENTIATE: and
INTEGRATE: . This is simple except for the problem of silence at the beginning or the end of the shape. The
only way to get around this is to specify START and STOP delays in the players, or to put "rests" at the
beginning or end of the shape.

The default time behavior of a player can be overridden by loading it with a custom function. This function is
called before each element is played and returns the time until the next element. See the
PUT.DUR.FUNCTION: method.

In summary, the duration of an element in a shape is determined by the following series of rules.

1) If a duration function CFA is non-zero, then it is used to determine the duration. The duration function must
have a stack diagram as follows:

Players6 - 9

your.dur.function (current_element# shape -- duration)

2) If the function is zero, and if the duration dimension is zero or greater as set by PUT.DUR.DIM: , then the
duration is taken from the duration dimension.

3) If the CFA for the duration function is zero, and the duration dimension is negative, the constant duration set
by PUT.DURATION: will be used.

This scheme gives the user a very flexible way of controlling the time alloted to the elements of the shape being
played.

Duty Cycle of Players

When elements are played, they are turned on and then later turned off. If the element is a note than this would
correspond to a NoteOn and a NoteOff. Some elements are singular events, for example MIDI program change,
so nothing happens when they are turned OFF. Players decide when to turn an element off based on several
factors. A given dimension can be specified to contain on times for each element, as in the Type 3 shapes
described in the shape chapter. When an element is turned on, the player will read that dimension and turn the
element off that specified amount of time later.

A global duty cycle can be specified, by setting the on dimension to -1. The duty cycle is the ratio between an
element's on time and the time until the next element begins. If the duty cycle is 1/1, an element will remain on
until the next element begins. This is useful for simple monophonic melodies. By modifying the duty cycle as
a piece plays, staccato or legato playing styles can be varied.

In other words, duty cycles specify the ratio of "note-on" time to the total duration of a given element. Duty-
cycles are particularly useful for MIDI information, where noteon/noteoff is often closely related to envelope.
However, the duty cycle, like many of HMSL's features, is intended to be highly general and programmable so
that it might be applied to a wide range of other musical ideas.

If the ratio exceeds 1:1 (i.e. the "on" time exceeds the total duration of the event) then the Polymorphous
Executive will introduce a "legato" between that event and the one following. Refer to the discussion on
OB.PLAYER methods below for more information on this.

Alternatively, one of the dimensions of a shape may be interpreted as the "on-time" for each event in the shape
that is played. In this mode each event can have its own on/off ratio associated with it, which may be entered
and edited as with any other dimension. The on dimension can be specified using PUT.ON.DIM: . If the
dimension is set to -1 then the global duty cycle set using PUT.DUTY.CYCLE: will be used.

The on time is passed to interpreters by setting the value ON.TIME. See the Instruments and Interpreters
chapter for more information on this.

6 - 10 HMSL Reference Manual

Pitch

Time

"Duration" versus "On-Time"

duration-1

on-time-1

duration-2

on-time-2

event-1

event-2

event-3

Figure 6.2

Stock Players

PLAYER-1 thru PLAYER-4 are currently set up with INS-MIDI-1 thru INS-MIDI-4 by STOCK.INIT.

OB.PLAYER Methods

Method Stack diagram
BUILD: (shape instrument -- , quick startup)

DEFAULT: (-- , set default values)

FREE: (--)

GET.xxx: (-- xxx , see PUT.xxx: , eg. PUT.REPEAT:)

GOTO: (element# shape -- , jump to new position)

PLAY.ON&OFF: (-- use both on and off interpreters)

PLAY.ONLY.ON: (-- use just on interpreter)

PREFAB: (-- setup "reasonable" player)

PRINT: (--)

PUT.DUR.DIM: (dim# -- , set which dim contains durations)

PUT.DUR.FUNCTION: (cfa -- , set function that determines durations)

PUT.DUTY.CYCLE: (on total --)

PUT.INSTRUMENT: (instrument --)

PUT.ON.DIM: (dim# | -1 -- , specifies dim. for "on" time)

PUT.REPEAT: (repeat-count --)

PUT.WEIGHT: (weight --)

USE.ABSOLUTE.TIME: (-- durations absolute times of values)

USE.RELATIVE.TIME: (-- durations relative times between values)

START: (-- , begin execution)

Players6 - 11

STOP: (-- , stop execution)

WHERE: (-- element# shape , what's currently playing)

Table 9-2. Player Methods

OB.PLAYER Methods

OB.PLAYER is a subclass of OB.COLLECTION, and OB.JOB. Please refer to the method documents for
those classes.

BUILD: (shape instrument -- , quick setup)

This is a shortcut way to connect a shape, an instrument and a player. It is equivalent to:
1 NEW: player
shape ADD: player
instrument PUT.INSTRUMENT: .player

DEFAULT: (--)

Initialize player, sets duty cycle to 4:5; ON dimension is set to -1 (meaning use the duty cycle specified, not
the dimensions); no instrument is specified. Dimension 0 is set for durations. Delays and Functions set to
zero. Use RELATIVE time. PLAY.ONLY.ON: called.

FREE: (--)

FREE: space used by player to hold shape. Deinstantiate any objects created by PREFAB: .

GET.xxx: (-- xxx , see corresponding PUT.xxx:)

GOTO: (el# shape -- , jump to new position)

Tell the player to jump to the given element of the given shape. This can be used to skip material in the
shape. See the WHERE: method. Note that GOTO: does not necessarily need to refer to a shape that is
contained in that player, but this can be a very dangerous (if interesting) technique.

PLAY.ON&OFF: (-- , Use ON and OFF Interps.)

Make two separate calls to the instrument: once for turning the element on, then again later to turn it off.
This technique is not used very often because it does not allow more than two elements to overlap in time. It
also can have problems if the shape values change between the ON and OFF events.

PLAY.ONLY.ON: (-- , only use ON Interpreter)

Only call the Instrument once for each element. It will call ELEMENT.ON: which uses the ON Interpreter.
This is the default.

PREFAB: (-- , setup everything needed)

This is a quick and dirty method for setting up a player. It dynamically instantiates an instrument, and a
shape then calls the BUILD: method. It also PREFAB:s the shape.

PRINT: (--)

Prints player's shape names, weight, instrument, duty cycle, duration, dimension, on dimension, repeat count,
scheduling type (epochal or durational), and if epochal, its toolate value. Also prints the Start/Repeat/Stop
Delays and Functions.

PUT.DUR.DIM: (dimension# -- , set which dim contains durations)

Specify which dimension of all component shapes in a player contain durations or absolute time. You must
ensure that the dimension# does not exceed the maximum number of dimensions in any of the shapes being
played. The duration dimension is typically 0.

6 - 12 HMSL Reference Manual

PUT.DUR.FUNCTION: (cfa | 0 -- , set duration function for player)

Here is an example duration function that scales the existing durations by the user data value.
: SCALE.DUR (element# shape -- duration)

0 SWAP ED.AT: []
(get duration from dimension 0)

CURRENT.OBJECT
(-- dur player , get player address)

GET.DATA: [] (-- dur data , get user data)
* (-- dur' , scale duration)

;
3 PUT.DATA: PL-DNV (set scale factor)
'C SCALE.DUR PUT.DUR.FUNCTION: PL-DNV

PUT.DUTY.CYCLE: (on total --)

The user specifies the ratio of "on time" to "total" duration for a player. For example, if a total duration is 10
for a given element of some shape, and the duty cycle is 4:5 (4 5 PUT.DUTY.CYCLE:), the "noteoff" event
will be sent at 8.

PUT.INSTRUMENT: (instrument --)

Tell the player which instrument to use when playing its shapes.

PUT.ON.DIM:
(dim# | -1 -- , specifies dimension for "on" time)

Tell the player that one of the dimensions of the shape contains ON Times. ON Times are mainly used when
playing notes. The ON Time is the time between Note ON and Note OFF. By storing ON Times in the shape
and specifying ON Times longer then Durations, we can make notes overlap. This allows us to play chords or
polyphonic sequences. A value of -1 signifies that the player's duty cycle will be used for calculating ON to
OFF time.

PUT.REPEAT: (repeat-count --)

Same as in collections and other morphs. Note that if you want something to repeat many times, it's best to
do it at the lowest possible level (players). This will not invoke the Polymorphous Executive more than it
needs to. That is, the morphs in the tree won't have to pass a lot of done messages up the tree. (In other
words, if you just want to hear a shape ten times, put it in a player, and give the player a repeat count of ten).

Note that like other morphs, a zero repeat count disables the player.

PUT.WEIGHT: (weight --)

The weight used by the Markov Chain behavior of Structures. It is also available to the user for other
purposes, and can be a handy place for simply storing a number or some miscellaneous data. See Collections
and Structures.

USE.ABSOLUTE.TIME: (-- , since beginning of shape)

The times in the shape are since the shape started playing.

USE.RELATIVE.TIME: (-- , between elements)

The times in the shape are relative to the start of the next event.

WHERE: (-- element# shape , what's currently playing)

Returns the element# and the shape that the player is currently executing. If used in conjunction with
GOTO: , very interesting results can be obtained!

Players6 - 13

Advanced Topics

Player Methods That Are Internal to HMSL

v Note: The following methods are used by the PE (polymorphous executive) for tasking players. They are not
intended for general use.

ABORT: (-- , Abort execution of player)
When HMSL.ABORT is called internally, an ABORT: message is sent to every player in the Active Object
list. This results in the current element being turned off. The instrument is closed and the player sends an
ABORT: message to whichever morph executed it. The ABORT: message thus propagates up the morph tree.

TASK: (-- , play pending elements)

Basic routine for tasking players, that is, deciding when to play elements from their component shapes. Turns
elements off or on, and keeps track of which shape is currently playing.

?DONE: (-- done?, is the morph done)

Checks REPEAT COUNT, and when shape(s) have been completely played, sends "done" message and resets
the player.

6 - 14 HMSL Reference Manual

	Players
	Most Important Information
	Tutorial 1: Shapes, Players and Instruments
	Tutorial 2: Controlling Players
	Advanced Technique: Use of Local Variables in Functions

	Tutorial 3: Algorithmic Composition
	Players — subclass of OB.JOB, OB.MORPH
	Specifying Time in different ways
	Duty Cycle of Players
	Stock Players

	OB.PLAYER Methods
	OB.PLAYER Methods

	Advanced Topics
	Player Methods That Are Internal to HMSL

